Project Funding Details
- Title
- ACTIVE HOT SPOT SUPPRESSION TO IMPROVE THERMAL DOSE AND CLINICAL OUTCOME OF LOCOREGIONAL HYPERTHERMIA TREATMENTS
- Alt. Award Code
- UVA 2012-5393
- Funding Organization
- KWF Kankerbestrijding / Dutch Cancer Society
- Budget Dates
- 2013-01-01 to 2017-01-01
- Principal Investigator
- Crezee, J.
- Institution
- University Medical Center Utrecht
- Region
- Europe & Central Asia
- Location
- Utrecht, NL
Collaborators
View People MapTechnical Abstract
Purpose:
Background: Hyperthermia (HT), the application of elevated temperatures (41-45°,C) to tumor tissue, is a powerful radio and chemo sensitizer. Randomised trials have demonstrated a significant improvement in tumor control and patient survival for cervical and other cancer sites by combining radiotherapy and HT. The results of clinical trials were positive in spite of the fact that goal temperatures rarely achieved in the tumor due to the incidence of unwanted hot spots in normal tissue. Clinical results can improve further when these treatment limiting hot spots could be suppressed as treatment outcome is strongly correlated to the achieved tumor temperatures. The 3-D power control of the latest generation phased array antenna systems for locoregional HT is in principle capable of preventing hot spots. However, manual optimization of system settings is very difficult due to the large number of degrees of freedom of these systems, and pre treatment planning is presently not yet sufficiently reliable due to uncertainty in input data. Instead, treatment planning guided active hot spot suppression can potentially improve tumor temperatures.
The aim of this project is therefore to develop methods for active hot spot suppression that can be applied in a practical way to all locoregional HT patients.
 ,
Plan of investigation:
Development and implementation of active hot spot suppression involves three steps: development of algorithms, pre-clinical tests and clinical tests.
i. , , , , , , , , , , , Development of algorithms: Step one is the development of algorithms capable of adapting phase and amplitude settings to suppress hot spots occurring at any possible location. To facilitate clinical use for the individual patient all potential hot spot locations are determined prior to treatment using a planning tool developed earlier at the AMC. Subsequently a set of phase and amplitude shifts is computed for suppression of each of these potential hot spots. ,Online application of this method is helpful for hot spots at locations not covered by the precomputed hot spots, this requires implementing fast graphics card computations.
ii. , , , , , , , , , , , Pre-clinical tests: Computer simulations will be used to test the performance of the developed algorithms under realistic clinical conditions, with emphasis on performance with limited temperature and E-field data, and uncertainty in tissue properties. In addition a series of tests will be performed in tissue equivalent phantoms using E-field and temperature probes at clinical locations. These pre-clinical tests will reveal the most reliable algorithm.
iii. , , , , , , , , , , , Clinical validation: The performance of the algorithm will be validated in 20 cervical cancer patients treated with hyperthermia using the 70 MHz AMC-8 regional HT system. Each patient will receive five HT sessions, and each HT session will start with standard experience based phase and amplitude settings. Hot spots are recorded subjectively by ,patient complaints. When a hot spot occurs these settings will be corrected using the phase and amplitude shifts computed by the algorithm for that location, without inducing new hot spots at other locations. The latter may require alternating different phase/amplitude settings to balance power deposition in different potential hot spot locations. Temperature, E-field and SAR measurements will be performed in the tumor and at other locations before and after correcting the settings. This correction procedure will be repeated whenever a hot spot occurs.
Two criteria will be used to evaluate the gain achieved by active hot spot suppression: (1) gain in tumor temperature, where a gain exceeding 0.5°,C will be considered clinically relevant, and (2) without increase in incidence of hot spot complaints.
 ,
Possible results:
Good treatment control becomes possible for non-experienced staff. Active hot spot suppression will help to reduce the incidence of hot spots in normal tissue, and thus result in a higher thermal dose in the tumor, which is associated with a better local control and improved clinical outcome. A 0.5°,C gain in tumour temperature is equivalent to doubling the thermal dose and >,10% increase in Tumor Control Probability.
Relevance for other cancer research:
The active hot spot suppression algorithm developed during this project will be generally applicable for all forms of locoregional HT using phased array antenna systems.
Public Abstract
 , , , Tumoren in het bekkengebied worden van buiten af verwarmd door HT systemen met onafhankelijke microgolfantennes. Met systemen die het afgegeven vermogen in 3 in plaats van 2 dimensies kunnen sturen, kan een hogere tumortemperatuur worden gerealiseerd, maar door het grotere aantal antennes is het heel moeilijk geworden voor de behandelaar om de beste instellingen te bepalen. Behandeling ondersteund door computerplanning is daarom nodig om optimaal te kunnen profiteren van de stuurmogelijkheden van deze systemen. De nauwkeurigheid van computerberekeningen is echter nog onvoldoende om per individuele patië,nt voorafgaand aan de behandeling de optimale instellingen voor te schrijven.
 ,
Doel van dit onderzoek is het bereiken van hogere tumortemperaturen door de instellingen van de HT apparatuur aan te passen in reactie op dreigende hot spots tijdens de behandeling. Hiervoor zal gebruik worden gemaakt van geavanceerde optimalisatie algoritmen die hot spots op aangeven plaatsen weten te onderdrukken. Hierdoor zullen we naar verwachting instellingen vinden die hogere tumortemperaturen realiseren, wat zal leiden tot betere lokale tumorcontrole en overleving.
 ,
Plan van aanpak: Ontwikkeling en implementatie van sturing met behulp van computerberekeningen bestaat uit 3 stappen: ontwikkeling van algoritmen, pre-klinische tests en klinische tests.
 ,
 ,1. Ontwikkeling van algoritmen: In deze eerste fase zullen snelle geavanceerde algoritmen worden ontwikkeld die instellingen kunnen aanpassen om op elke gewenste plek hot spots te kunnen onderdrukken. Alle locaties waar mogelijk hot spots kunnen optreden worden vooraf in kaart gebracht om berekeningen snel genoeg te maken voor toepassing tijdens de behandeling.
 ,2. ,Pre-klinische tests: De werking van de algoritmen zal worden getest onder realistische klinische omstandigheden met computersimulaties, evenals in speciale fantomen. Met deze tests kunnen we algoritmen verfijnen en de meest effectieve optimalisatie methode selecteren.
 ,3. ,Klinische tests: Het algoritme zal worden getest in 20 patië,nten met baarmoederhalskanker die behandeld worden met het 70 MHz AMC-8 systeem. Elke HT sessie zal starten met standaard klinische instellingen en telkens bij dreigende hot spots zal het ontwikkelde algoritme nieuwe instellingen voorschrijven die de temperatuur op de aangegeven locaties verlagen.
 ,
Verwachte resultaten: De ontwikkelde methode voor sturing met behulp van computerberekeningen tijdens de behandeling zal naar verwachting leiden tot hogere tumortemperaturen en minder hot spots in gezond weefsel. Dit zal leiden tot betere klinische resultaten. De resultaten zullen ook toepasbaar zijn voor andere HT systemen.
Cancer Types
- Cervical Cancer
Common Scientific Outline (CSO) Research Areas
- 5.2 Treatment Localized Therapies - Clinical Applications
- 5.7 Treatment Resources and Infrastructure Related to Treatment